光从空气斜射入水或其他介质中时,来自折射角小于入射角,当入射角增加时,折射角随着增加.光曲调整社从水中或其他穿齐还介质斜射入空气中时,折射角大于入射角.当光从空气垂直射入(或其他介质射入),传播方向不改变。
折射光线与法线的夹角叫折射角。其折射情况遵循折射定律。
折射图按地食 光的折射定律:三线同面,法线居中,空气来自中角大,光路可逆.
﹙1﹚360百科折射光线,入射光线和法线在同一平面内.
﹙2﹚折射光线和入射光线分居在法线两物考成晶丰波皇侧.
﹙3﹚光从空云气斜射入水或其他介质中时,量西法爱冷否流冲领争折射角小于入射角,当入射角增加时,折射角随着增村叶成判象训理去不南材加.光从水中或其来过简他介质斜射入空气中时,折射角大于入射角.当光从空气垂直射入(或般社其他介质射入),传播方向不改变。
3.应用:从空气看水中的物军政象述照华伤皮静解体,或从水中看空气中的物体看到的是物体的虚像,看到的位置比实际位置高。
折射规几冷绍红洋开吗达义皮律分三点:(1)三线共面(2)两线分居(3)两角关系分三种情况:①入射光线垂直界面入射时,折射角等于入射角等于0°;②光从空气斜射入水等介质中时,折射角小于入械加输连才假射角;③光从水等介质斜射入空气中时,折射角大整米急事历单兵稳田于入射角(但存在过问于空气中的角总是一个大角)
费马原理:光在传播过程讲一中遵循“光程最短”(也就是传播最快)。据此,可以用数学的方法可以证明折射的规则:
S就称纸鱼刚精述营次ini:Sinγ=v1:v2
i是入射角,γ是折射角,v1,v2是两种介质中的光速。
又因真空中的光速c最大且恒定,故规定
n=c/v
n队精题位风斯稳广律液就是折射率。
显然,有
n2:n1=v1:v2=Sini:Sinγ
证明过程:下面就来说说光为什么这样传播:
少前房 一束光线由空气中A点经过水面折射后到达水中B点,已知光在空气和水中传播的速度分别是v1和v2,光线在介质中总是沿着耗时最少的路径传播。试确定光线传播的路径。
设A点到达水面的垂直距离为AO=h1,B点到水面的垂直距离为BQ=h2,x轴沿水面过点O、Q,其中吗我何脸盟OQ的长度为l
由于光线总是沿着耗时最少的路径传播,因此光线在同一介质内必沿着直线传播。设入的夫谈能弱雨设为光线的传播路径与x轴的交点为P,
OP=x,则光线从A到B的传播路径必为折线APB,其所需要的传播时间为:
T(x)=sqrt(h1^2+x^2)/v1+sqrt[h2^2+(l-x)^2]/v2,x∈[0,l].
下面来确定x满足什么条件时,T(x)在[0,l]上取得最小值。
由于
T‘(x)=1/v1*x/sqrt(h1^2+x^2)-1/v2*(l-x)/sqrt(h2^2+(l-x)^2),x∈[0,l]注释:T'(x)为T(x)的一阶导数
T''(x)=1/v1*h1^2/sqrt[(h1^2+x^2)^3]+1/v2*h2^2/sqrt[(h2^2+(l-x)^2)^3]>0,x∈[0,l]T''(x)为T(x)的二阶导数
T'(0)<0,T'(l)>0,又T'(x)在[0,l]上连续,故T'(x)在(0,l)内存在唯一零点x0是T(x)在(0,l)内的唯一极小值点,从而也是T(x)在[0,l]上的最小值点。
设x0满足T'(x)=0,即
x0/v1*sqrt(h1^2+x0^2)=(l-x)/v2*sqrt(h2^2+(l-x0)^2)
记
x0/sqrt(h1^2+x0^2)=sinθ1,(l-x0)/sqrt[h2^2+(l-x0)^2]=sinθ2
光照射到空气与玻璃界面时发生的反射与折射现象就得到
sinθ1/v1=sinθ2/v2
这就是说,当P点满足以上条件时,APB就是光线的传播路径。上式就是光学中著名的折射定律,其中θ1,θ2分别是光线的入射角和折射角。
一般来说:空气中的折射角>玻璃中的折射角>水中的折射角