当前位置:首页 > 百科

伽马射线能量束

2011-02来自-17,据英国每日源期护翻维缩干析只邮报报道,美国宇航局最新研究显示,地球曾被50万光太剂政十至雨烧年之遥的强烈"巨大耀斑"瞬间照射。这种强大的能量脉冲束照亮了地球大气层。它源自于银河系对面一颗中子星的庞大磁场处组装面入,中子星也被称360百科为"软伽马射线中继器",通常喷射低能量伽马射线,但有时其磁场重们水至敌新排列时会释放巨大的能量束。

  • 中文名称 伽马射线能量束
  • 时间 2004年12月
  • 简介 中子星SGR 1806-20释放的脉冲束
  • 发现时间 2011-02-17

简介

自遥远的伽马射线暴:2004年12月,50万光年之遥的中子星SGR 1806-20释放强烈的来自伽马射线,亮度超过月球,照亮地球大气层
自遥远的伽马射线暴:2004年12月,50万光年之遥的中子星SGR 1806-20释放强烈的伽马射线360百科,亮度超过月球,照亮地球大气层

  2011-02-17,据英国<每日邮报>报道,美医委照棉那发国宇航局最新研究显示粮完由找令磁怕已,地球曾被50万光年之遥的强烈“巨大耀斑”瞬间照射。这种强大的能量脉冲束照亮了地球大气层。它源自于银河系对面一颗中子星的庞大磁场,中子星也被称为“软伽马射线中继器”,通常喷射低能量伽马射线,但有时其磁场重新排列时会释放巨大的能量束。

中子星脉冲束

“手距前重信宣维延沿相述养电筒”:艺术家描述出中均举子星SGR 1806-20释放伽马射线“耀斑”
“手电筒”:艺术家描述出中子星SGR 1806-校功容20释放伽马射线“耀斑”

  这种能量束可穿越太空导致数千颗人茶友体造卫星出现故障,使地球顶端大气层电离化。据美国宇航局称,这种独特的伽马射线束甚治判比氧原改非常强烈,比满月更加明亮,甚至比迄今太阳系外勘测的任何天体都明亮。这一令人难以置信的伽马射线喷发发生于2004年12月27日,是由中子星SGR1806-20释放的脉冲束。美国洛斯-阿拉莫斯国家实验室的大卫-帕默博士说:“这可能是天文学家一生中难得一见的天文现象,同时也是一种非常罕见的中子星事件。在过去35年里,我们仅探测到其它两次太阳系外大型耀斑助据叫指培算介鱼当事粒喷射事件,而中子星SGR1806-20释放的伽马射线束的强度是前者的数百倍。”

伽玛射线

马射线瞬间照亮地球大气层
伽马射线瞬间照亮地球大气层

  该伽马射线能量束并不会对地球构成威胁,这是由于中子星SGR1806-20距来自离地球非常遥远,但如果中子星距离地球较近的话,将对地球构成致360百科命的伤害。如果中子划顾越放跟星距离地球仅有十几光年,将会出现严重的破坏性。天文学家认为宇宙中存在大量的中子星,位银河系内的中子星能量相对较低。

耀斑

  科学家指出,2008年3月19日,GRB080319B恒星将瞄准地球释放强烈的耀足降响械买斑。该伽马射线束非常明亮,人类肉眼也可观看到。美国马萨诸塞州哈佛史密逊森天体物理学研究中心的布赖恩-加恩斯勒说:“之后最大的太阳系内伽马射线‘巨大耀斑’与2004年12月27日出现的伽马射线耀斑事件课只曲协小相比,则显得微不足道。”加恩斯勒强调称,如果类似的中子星仅在十几光年范围角客顾着内释放伽马射线,将严重损坏地球大气层。幸运的是,我们探测到的所有中子星都距离地球较远。[2]

中子星

又称作脉冲星

  中子星,是恒星演化到末期,经由引力坍缩血结发生超新星爆炸之后,可能成为的少数终点之一。恒星在核心的氢、氦、碳等元素于核聚变反应中耗尽,当它们收兵情研最终转变成铁元素时便无法从核聚变中获得能量。失去热辐射压力支撑的外围物质受重力牵引会急速向核心坠落,有著缺房汉事根府由天换可能导致外壳的动能转化为热能向外爆发产生超新星爆炸,或者根据恒星质量的不同,恒星的内部区域被压缩成白矮星、中子星以至黑洞。白矮星被压缩成中子星的过程中恒星遭受剧烈的压缩使其组成物质中的电子并入质子转化成中子,直径大约只有十余公里,但上头一立方厘米的物质便可重达十亿吨,且旋转速度极快,而由于其磁轴和自转轴并不重合,磁场旋转时所产生的无线电波等各种辐射可能会以一明一灭的方式传到地球,有如人眨眼,故又称作脉冲谓朝国因意门剧类星。

​产生黑洞

  一颗典型的中子星质量介于太阳质量的1.35到2.1倍,半合础况显十断措按径则在10至20公里之间(质量越大半径收缩得越小),也就是太阳半径的30,000至70,000分之一。因此,中子星的密度在每立方厘米8×1013克至2×1015克间,此密度大约是容联据电汉离政攻引喜原子核的密度[1]。城氢穿红致密恒星的质量低于1.44倍太阳质量,则可能是白矮星,但质量大于奥本海默-沃尔可夫极限(5倍太阳质量)的恒星会继续发生引力坍缩,则无可避免的将产生黑洞。

强大表面重力

  由于中子星保留了母恒星大部分的角动量,但半径只是母恒星极微小的量,转动惯量的减少导致了转速迅速的增加,产生非常高的自转速率伟九煤应今车团,周期从毫秒脉冲星的700分之一秒到30秒都有。中子星的高密度也使它有强大的表面重力,强度是地球的2×1011到3×1012倍。逃逸速度是将物体由重力场移动至无穷远的距离所需要的速度,是测量重力的一项指标。一颗中子星的逃逸速度大约在10,000至150,000公里/秒之间,也就是可以达到光速的一半。换言之,物体落至中子星表面的速度也将达到150,000公里/秒。更具体的说明,如果一个普通体重(70公斤)的人遇到了整流银镇括同重视中子星,他撞击到中子星表面的能量将相当于二亿吨核爆的威力(四倍于全球最巨大的卷裂晶名标级胡核弹大沙皇的威力)[1]

伽马射线

强穿透力

  伽马射线【拼音:gā-mǎshè-xiàn】,或γ射线杂析染呼今战越参是原子衰变裂解时放出的射线之一。此种电磁波波长极短,穿透力很强,又携带高能量,容易造成生物体细胞内的DNA断裂进而引起细胞突变、造血功能缺失、癌症等疾病。

  它可以杀死细胞,因此也可以作医疗之用,杀死癌细胞。

  1900年由法国科学家P.V.维拉德(PaulUlrichVillard)发现,将含镭的氯化钡通过阴极射线,从照片记录上看到辐射穿过0.2毫米的铅箔,拉塞福称这一贯穿力非常强的辐射为γ射线,是继α、β射线后发现的第三种原子核射线。1913年,γ射线被证实为是电磁波,由原子核内部自受激态至基态时所放出来的,范围波长为0.1埃,和X射线极为相似,具有比X射线还要强的穿透能力。γ射线通过物质并与原子相互作用时会产生光电效应、康普顿效应和正负电子对效应。

应用

  探测伽玛射线有助天文学的研究。当人类观察太空时,看到的为「可见光」,然而电磁波谱的大部份是由不同辐射组成,当中的辐射的波长有较可见光长,亦有较短,大部份单靠肉眼并不能看到。通过探测伽玛射线能提供肉眼所看不到的太空影像。在太空中产生的伽玛射线是由恒星核心的核聚变产生的,因为无法穿透地球大气层,因此无法到达地球的低层大气层,只能在太空中被探测到。太空中的伽玛射线是在1967年由一颗名为「维拉斯」的人造卫星首次观测到。从20世纪70年代初由不同人造卫星所探测到的伽玛射线图片,提供了关于几百颗此前并未发现到的恒星及可能的黑洞。于90年代发射的人造卫星(包括康普顿伽玛射线观测台),提供了关于超新星、年轻星团、类星体等不同的天文信息。

成因大辩论

  关于伽马射线暴的成因,至今世界上尚无定论。有人猜测它是两个中子星或两个黑洞发生碰撞时产生的;也有人猜想是大质量恒星在死亡时生成黑洞的过程中产生的,但这个过程要比超新星爆发剧烈得多,因而,也有人把它叫做“超超新星”。为了探究伽马射线暴发生的成因,引发了两位天文学家的大辩论。在20世纪七八十年代,人们普遍相信伽马射线暴是发生在银河系内的现象,推测它与中子星表面的物理过程有关。然而,波兰裔美国天文学家帕钦斯基却独树一帜。他在上世纪80年代中期提出伽马射线暴是位于宇宙学距离上,和类星体一样遥远的天体,实际上就是说,伽马射线暴发生在银河系之外。然而在那时,人们已经被“伽马射线暴是发生在银河系内”的理论统治多年,所以他们对帕钦斯基的观点往往是付之一笑。但是几年之后,情况发生了变化。1991年,美国的“康普顿伽马射线天文台”发射升空,对伽马射线暴进行了全面系统的监视。几年观测下来,科学家发现伽马射线暴出现在天空的各个方向上,而这就与星系或类星体的分布很相似,而这与银河系内天体的分布完全不一样。于是,人们开始认真看待帕钦斯基的伽马射线暴可能是银河系外的遥远天体的观点了。由此也引发了1995年帕钦斯基与持相反观点的另一位天文学家拉姆的大辩论。

  然而,在十年前的那个时候,世界上并没有办法测定伽马射线暴的距离,因此辩论双方根本无法说服对方。伽马射线暴的发生在空间上是随机的,而且持续时间很短,因此无法安排后续的观测。再者,除短暂的伽马射线暴外,没有其他波段上的对应体,因此无法借助其他波段上的已知距离的天体加以验证。这场辩论谁是谁非也就悬而未决。幸运的是,1997年意大利发射了一颗高能天文卫星,能够快速而精确地测定出伽马射线暴的位置,于是地面上的光学望远镜和射电望远镜就可以对其进行后续观测。天文学家首先成功地发现了1997年2月28日伽马射线暴的光学对应体,这种光学对应体被称之为伽马射线暴的“光学余辉”;接着看到了所对应的星系,这就充分证明了伽马射线暴宇宙学距离上的现象,从而为帕钦斯基和拉姆的大辩论做出了结论。到目前为止,全世界已经发现了20多个伽马射线暴的“光学余辉”,其中大部分的距离已经确定,它们全部是银河系以外的遥远天体。赵永恒研究员说,“光学余辉”的发现极大地推动了伽马射线暴的研究工作,使得人们对伽马射线暴的观测波段从伽马射线发展到了光学和射电波段,观测时间从几十秒延长到几个月甚至几年。

  超新星再次引发争论难题一个接着一个。2003年3月24日,在加拿大魁北克召开的美国天文学会高能天体物理分会会议上,一部分研究人员宣称它们已经发现了一些迄今为止最有力的迹象,表明普通的超新星爆发可能在几周或几个月之内导致剧烈的伽马射线大喷发。这种说法一经提出就在会议上引发了激烈的争议。其实在2002年的一期英国《自然》杂志上,一个英国研究小组就报告了他们对于伽马射线暴的最新研究成果,称伽马射线暴与超新星有关。研究者研究了2001年12月的一次伽马射线暴的观测数据,欧洲航天局的XMM—牛顿太空望远镜观测到了这次伽马射线暴长达270秒的X射线波段的“余辉”。通过对于X射线的观测,研究者发现了在爆发处镁、硅、硫等元素以亚光速向外逃逸,通常超新星爆发才会造成这种现象。

  大多数天体物理学家认为,强劲的伽马射线喷发来自恒星内核坍塌导致的超新星爆炸而形成的黑洞。麻省理工学院的研究人员通过钱德拉X射线望远镜追踪了2002年8月发生的一次时长不超过一天的超新星爆发。在这次持续二十一小时的爆发中,人们观察到大大超过类似情况的X射线。而X射线被广泛看作是由超新星爆发后初步形成的不稳定的中子星发出。大量的观测表明,伽马射线喷发源附近总有超新星爆发而产生的质量很大的物质存在。

  反对上述看法的人士认为,这些说法没有排除X射线非正常增加或减少的可能性。而且,超新星爆发与伽马射线喷发之间存在时间间隔的原因仍然不明。无论如何,人类追寻来自浩瀚宇宙的神秘能量———伽马射线暴的势头不会因为一系列的疑惑而减少,相反,科学家会更加努力地去探索。作为天文学的基础研究,这种探索对人们认识宇宙,观察极端条件下的物理现象并发现新的规律都是很有意义的。[3]

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com
标签:

  • 关注微信
上一篇:琴操·猗兰操
下一篇:赚他一千万

相关文章