当前位置:首页 > 百科

叶绿素荧光

叶绿素荧光,作为光合作用研究的利反却歌刑英简纸取探针,得到了广泛的研究和应用。叶绿素荧光来自不仅能反映光能吸收、激发能传递和光化学反应等光合作用的原初反应过程,而且与电子传递、质子梯度的建立及ATP合成360百科和CO2固定等过程有关。几乎所有半属块运满频风套形光合作用过程的变化均可通过叶绿素荧光反映出来,而荧光测定技术不需破碎细胞,不伤害生物体,因此通过研究叶绿素荧光来间接研究光合作用的变化是一种简便、快捷、可靠的方法。叶绿素荧光在光合作用、植物胁迫生理学、水生生物学、海洋学和遥感等方面得到了广泛的应用。

  • 中文名称 叶绿素荧光
  • 首次发现者 传教士Brewster
  • 首次发现时间 1834年
  • 作用 光合作用研究的探针

研究历史

  叶绿素荧光现象是由传教士Brewster首次发现的。1834年来自Brewster发现当一束强耐供程刚属太阳光穿过月桂叶子的乙醇提取液时,溶液的颜色变成了绿色的互补色--红色,而且颜色随溶液的厚度而变化,这是历史上对叶绿素荧光及其重吸收现象的首次记载。后来,Stokes(1852)认识到这是一种光发射现象,并使用了"fluorescence"一词。1874年,Müller发现叶绿素溶液稀释后,荧光强度比活体叶子的荧光强得多。尽管Müller提出叶绿素荧光和光合作用之间可能存在相反的关系,考边但由于他的实验没有对照,实验条件控制不严格,因此人们并没有将叶绿素荧光诱导(瞬变)现象的发现归功于Müller。

  Kautsky是公认的叶绿素荧光诱导现象的360百科发现者。1931年,Kautsky和Hirsch用肉眼房让八该尔错市社放灯觉观察并记录了叶绿素荧光诱导现象(Lichtenthaler,1992;Govindjee,1995根范菜伟落己)。他们将暗适应的叶子照光后,发现叶绿素荧光强度随时间而变化,并与CO2的固定有关(图3.1)。他们得到的主要结论如下:1)叶绿素荧光迅速升高到最高点,然后下降,最终达到一稳定状态,整个过程在几分钟内完成。2)曲线的上升反映政留力湖场技初笔了光合作用的原初光化学反燃极素深只矿应,不受温度(0部新慢工烈李个℃和30℃)和HCN处理的影响。若在最高点时关掉光,则荧光迅速下降。3)荧光强度的变化与CO2的固定呈相反的关系,若荧光强度下降,则CO2固定增加。这说明当荧光强度降低时,较多的光能用于转变成化学能。4)奇怪的是(照光后)CO2的固定有一个延滞期,似乎说明"光依赖"的过程对CO2固定过程的进行是必需的。另一个未得到解释的现象是若在荧光诱导结束后关掉光,则荧光水平的恢复需要很长时间。在Kautsky的发现之后,人们对叶绿素荧光诱导现象进行了广泛而深入的研究,并逐步形成了光合作用荧光诱导理论,被广泛应用于光合作用研究。由于Kautsky的杰出贡献,叶绿素荧光诱导现象也被称为Kautsky效应(Kautsky Effect)。

量子产量

  细胞内的叶绿素分子通过直接吸收光量子或间接通过捕光色素吸收光量径敌宽子得到能量后,从基态(低能态缺深学开革战破)跃迁到激发态(高能态)。由于波长越短能量越高,故叶绿素分子吸收红光后,电子跃迁到最低激发态;吸收蓝光后,电子跃迁到比吸收红光更高的能级(较高激发态)。处于较高激发态的叶绿素分子很不稳定,在几百飞秒(fs,1 fs=10-15 s)内,通过振动弛豫向周围环境辐射热量,回到最低激发态(图3.2)。最低激发态的叶绿素分子可以稳定存在几纳秒(ns,1 ns=10-9 s)。

  处于较低激发态的叶绿素分子可以通过几种途径释放能量回到稳定的基态。能量的释放方式有如下几种(图3.3)(Campbell et al.,1998;Roháč烈七都愿际车ek & Barták,1999;Malkin & Niyogi,2000):1)重新放出一个光主只办保坚超谈今练争成子,回到基态,即产生荧光。由于部分激发能在放出荧光光子之前以热的形式逸散掉了,因此荧光的波长比吸收光的希数食径掉菜养父民船波长长,叶绿素荧光一般背实念补政找志耐至德位于红光区。2)不放出光子,直接以热的形式耗散掉(非辐射能量耗散)。3)将能量从一个叶绿素分子传递到邻近的另一个叶绿素分子,能量在一系列叶绿社轻谓纪能包围素分子之间传递,最后到达反应中心,反应中心叶绿素分子通过电荷分离将能量传递给电子受体,从而进行光化学反应。以上这3个过程是相互竞争的,往往是具有最大速率的过程处于支配地位。对许多色素分子燃反纸创谈油志伟来说,荧光发生在纳秒级,而光化学发生在ps级,因此当光合脱菜病认跳世生物处于正常的生理状态时,天线色素吸收的光能绝大部分用来进行光化学反应,荧光只占很小的一部分。

  活体细胞内由于激发能从叶绿素b到叶绿素a的传递几乎达到100%的效率,因此检测不到叶绿素b荧光。在室温下,绝大部分(约90%)的活体叶绿素荧光来自PSⅡ的天线色素系统,而且光合器官吸收的能量只有约3%~5%用于产生荧光(林世青,1996;Krause & Weis,1991)。

产品调制

  调制叶绿素荧来自光全称脉冲-振幅360百科-调制(Pulse-Amplitude-Modulation,PAM)叶绿素荧光,我们国内一架结推响之之斗际面断般简称调制叶绿素荧光,测量调制叶绿素荧光的仪器叫调制荧光仪,或叫PAM。

  调制叶绿素荧光(PAM)是站杨尽编美扩案今底明由研究光合作用的强大工具,与光合放氧、气体交换并称为光合作用测量的三大技术。由于其审补测量快速、简单、可靠、且测量过程对样品生长基本无影响,已成为光合作用领域发表文献最多的技术。

工作原理

  1983年,弱决过排道斗青直门棉特WALZ公司首席科学家,德国乌兹堡大学教授Ulrich Schreiber博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅调制(Pulse-Amplitude-Modulation,PAM)荧光仪--PAM-101/102/103。

  所谓调制技术,就是说用于激发波厚径介叫于将荧光的测量光具有一定的调制(开/关)频率,检测器只记录与测量光同频的荧光,价示五利视景千司因此调制荧光仪允许测量所有生理状态下的荧光,包括背景光很强时。正是由于调制技术的出现,才使得叶绿素荧光由传统的"黑匣子"(根肉避免环境光)测量走派志春溶向了野外环境光下测量,由生理学走向士适得重散笑林相班获雨了生态学。

  所谓饱和脉冲技术,就是打开一个持续时间很短(一般小于1 s)的强光关闭所有的电子门(右前秋收介劳环却风光合作用被暂时抑制),从而使叶绿素荧光介仍理铁守达到最大。饱和脉冲(Saturation Pulse, SP)可被看作是光化光的一个特例。光化光越强,PS II释放的电子越多,PQ处累积的电子越多,也就是说关闭态的电子门越多,F越高。当光化光达到使所有的电子门都关闭(不能进行光合作用)的强度时,就称之为饱和脉冲。

  打开饱和脉冲时,本来处于单八李石限开放态的电子门将该用于光合作用的能机写业量转化为了叶绿素荧光和热,F达到最大值。

  经过充分暗适应后,所有电子门均处于开放态,打开测量光民做手得到Fo,此时给出一个饱和脉冲,所有的电子门就都将该用于光合作用的能量转化为了荧光和热,此时得到的叶绿素荧光为Fm。根据Fm和Fo可以计算出PS II的最大量子产量Fv/F责热个钢阻目m=(Fm-Fo)/Fm,它反映了植物的潜在最大光合能力。

  在光照下光合作用进行时,只有部分电子门处于开放态。如果给出一个饱和脉冲,本来处于开放态的电子门将该用于光合作用的能量转化为了叶绿素荧光和热,此时得到的叶绿素荧光为Fm'。根据Fm'和F可以求出在照光条件下PSII反应中心部分关闭的情况下的实际原初光能捕获效率=ΦPSII=ΔF/Fm'=(Fm'-F)/Fm',它反映了植物的实际光合效

  在光照下光合作组代虽当写为非伤用进行时,只有部分电子门处于关闭态,实时荧光F比Fm要低,也就是说发生了荧光淬灭(quenching)。植物吸收的光能只有3条去路:光合作用、叶绿素荧光和热。根据能量守恒:1=光合作用+叶绿素荧光+热。可以得出:叶绿素荧光=1-光合作用-热。也就是说,叶绿素荧光产量的下降(淬灭)有可能是由光合作用的增加或热耗散的增加引起的。由光合作用的引起的荧光淬灭称之为光化学淬灭(photochemical quen布科普ching, qP);由热耗散引起的荧光淬灭称之为非光化学淬灭(non-photochemical quenching, qN或NPQ)。光化学淬灭反映了植物光合活性的高低;非光化学淬灭反映了植物耗散过剩光能为热的能力,也就是光保护能力。

  光照状态下打开饱和脉冲时,电子门被完全关闭,光合作用被暂时抑制,也就是说光化学淬灭被全部抑制,但此时荧光值还是比Fm低,也就是说还存在荧光淬灭,这些剩余的荧光淬灭即为非光化学淬灭。淬灭系数的计算公式为:qP=(Fm'-Fs)/Fv'=1-(Fs-Fo')/(Fm'-Fo');qN=(Fv-Fv')/Fv=1-(Fm'-Fo')/(Fm-Fo);NPQ=(Fm-Fm')/Fm'=Fm/Fm'-1。

  当F达到稳态后关闭光化光,同时打开远红光(Far-red Light, FL)(约持续3-5 s),促进PS I迅速吸收累积在电子门处的电子,使电子门在很短的时间内回到开放态,F回到最小荧光Fo附近,此时得到的荧光为Fo'。由于在野外测量Fo'不方便,因此野外版的调制荧光仪(除PAM-2100和WATER-PAM)外,多数不配置远红光。此时可以直接利用Fo代替Fo'来计算qP和qN,尽管得到的参数值有轻微差异,但qP和qN的变化趋势与利用Fo'计算时是一致的。由于NPQ的计算不需Fo',近10几年来得到了越来越广泛的应用。

  根据PS II的实际量子产量ΔF/Fm'和光合有效辐射(Photosynthetically Active Radiation, PAR)还可计算出光合电子传递的相对速率rETR=ΔF/Fm'·PAR·0.84·0.5。其中0.84是植物的经验性吸光系数,0.5是假设植物吸收的光能被两个光系统均分。

仪器简介

  PAM-101/102/103,最经典的型号,虽已停产,但在国际最著名的光合作用实验室,仍是主打机型,原因很简单,它老不坏啊。

  PAM-2000/PAM-2100,最畅销的便携式机型,应用非常广泛

  MINI-PAM,比PAM-2100便宜,功能同样强大

  DIVING-PAM,全球第一台可水下原位测量植物生理的仪器,仪器全防水设计,在珊瑚研究领域应用非常广泛

  IMAGING-PAM,新型荧光成像系统,最有意思的是一个主机可以连接多个探头,功能超级强大,是"下一代"产品

  DUAL-PAM-100,同步测量叶绿素荧光和P700,也就是同时研究PSII和PSI活性,在技术上有重大革新

  等等

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com
标签:

  • 关注微信
上一篇:千层饼
下一篇:大花鸟巢兰

相关文章