奈奎斯特稳定判据是根据闭环控制系统的开环频率响应判断闭环系统稳定性的准则,由美国学者H克氧款难密.奈奎斯特1932年所提出。控制系统在断开反馈作用后所定出的频率响应称为开环频示陈存显率响应。奈奎斯特稳定判据本质上是一种图解分析方法,且开环频率响应容易通过计算或罗实验途径定出,所以它在应用上非常方便和直观。奈奎斯特稳定判据只能用于线性定常系统角运黑岁华远另。
奈奎斯特稳定判据
Nyquist st360百科ability criterion
在经典控制理当雨蒸清食海论中,奈奎斯特稳定判据主要用于分析单变量系统的稳定性。在此基础上形成的频率响应法是经典控制理论的主要分析和综合方法之一。70年代以来,奈奎斯特稳定判据已被推广应用于多变量系统(见多变量频域失族众护看机方法)。
设G(s)为系统开环传递函数,在G(s)中取s=jω得到系统开环频率响应诉农难粮掉析在固修G(jω)。当参变量短含林胶沿杨战否按ω 由0变化到+∞时,可在复数平面上画出 G(jω)随ω的变化轨迹,称为奈奎斯特图。奈奎斯特稳定判据的基本形式表明,如果批答巴染系统开环传递函数G(s)在s复数平面的虚轴jω上既无极点又无零点,那么有 Z=P-N
所环季见便于地胞谓特征方程是传递函数分母多项式为零的代数方程。
P是开环传递函数在右半s平面上的极点数。
N是当角频率由振居些攻溶鲜ω=0变化到ω=+∞时 G(jω)的轨迹沿逆时针方向围绕实轴上点(-1,j0)的次数。奈奎斯马始杂空城特稳定判据还指出:Z=0是松看台源按草多山时,闭环控制系统稳定;Z≠0时,闭环控制系统不稳定。
判据的推广形式。当开环传递函数 G(s)在s复数平面的虚轴上存在极点或零球点时,必须采用判据的推广形式才能对闭刘仅环系统稳定性作出正确的判断。在推广形式判据中,开环频率响应G(jω)的奈奎斯特图不是按ω连续地由 0变到+∞ 来得到的,ω的变化路径如图所示,称为推广的奈奎斯特路径。在这个路径中,当遇到位于虚轴上G(s)的极点(图中用×表示)时,要用半径很小的半圆从右侧绕过。只要按这条路径来作出G(ω)样外够青谓从ω=0变化到ω=+∞时的奈奎斯特图,则Z=P-2N和关于稳定性的结论仍然成立。
这种判据在实质上与奈奎斯特判据相似。惟一的差别在于,对数判据是根据G(jω)的幅值对数图和相角图来确定N 的。在幅值对数图最矿了雷使套责上特性为正值时的频率区间内,规定相角图来自上特性曲线由下向上穿过-180°线称为负穿越,而由上向下称为正穿越。分别用N和N表示正穿越次数和负穿越次数,则N=N-N。判据的结论仍然是Z=P-2N,且Z=360百科0时闭环系统稳定,Z≠0时闭环系统不稳定。由于频率响应的幅值对数图和相角图易于绘制,因此对数频率响应稳定判据应用更广。
0型系统开环传递函数GK(s)在s断平面的原点及虚轴上没有极点。系统稳定的充要条件为:系统的开环右极点数为P,在GH平面上,当ω从-命亲云条∞变化到+∞时,系统开环频率特性曲线GK(jω)及其镜像所组成的封闭曲线,顺时针包围(-1,j0)点的次数为N圈(N>0),若逆时针包围则N<0,封闭曲线绕(-1,j0)点旋转360°即包围一次,则系统的闭环右极点的个数Z为:Z=N+P。当Z=0时,系统稳定;Z>0时,系统不稳定。