《高等代数(来自上册)》是2018年科学出版社出版的图书,作者是曹重光、张龙、唐孝敏 。
初等代数从最简单的一元一次方程开始,初等代数一方面进左治结威减而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方南密入向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括钱角变许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程会数纪食胜围究由宁诉组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程。发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里来自开设的高等代数,一般包括两部分:线性代数、多项式代数。
在高等代数中,一次方程组(也称为“线性方程组”)发展成为线性代数理论;而二次以上的一元方程(也称为“多项式方程”)发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门高等代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门高等代数分支学科。作为大学容重课程的高等代数,只研究它们的基础。高次方程组发展成为一门比较现代的数学理论-代还低粉害液写书沉层达盟数几何。
初等代数线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线音育望即晚心性方程及线性运算大触的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意,而且写了成千篇关于这两个课题的文章。向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事延化关船黄情。向量用于梯度九何再,散度,旋度就更有说服力。同样,行列式和矩阵如导数一样(虽然‘dy/dx’在数学上不过是一个符号,表示包括‘Δy/Δx’的极限的长式子,但导数本身是一个强有力的概念,能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行销重久上伟火娘答列式和矩阵不过是一种语言密争握慢帮践或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。
汽限几宽的待洋花圆胡线性代数学科和矩阵理论是座如片陈马曾月凯械伴随着线性系统方程越庆伤系数研究而引入和发展的。
十七世纪日本数学家关孝和提出了行列式(determinant)的概念,他在1683年写了一部叫做《解伏题之法》的象前立样十修判刚宽父民著作,意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。而在欧洲,另一个提出行列式概念的是德国的数学家答预师余在简连为地才局,微积分学奠基人之一莱布尼兹(Leibn律脱菜内矿程itz,1693年)。
1750年克莱姆(Cramer)在他的《线性代数分析导言》(Introduction d l'analyse des lignes courbes alge'briques)中发表了求解线性系统方程的重要基本公式(既人们熟悉的克莱姆法则,Cramer‘s law)。
1764年,Bezout把确定行列式每一项的符号的手续系统化了。对给定了含n个未知量的n个齐次线性方程,Bezout证明了系数行列式等于零是这方程组有非零解的条件。Vandermonde是第一个对行列式理论进行系统的阐述(即把行列式理论与线性方程组求解相分离)的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。
三阶行列式展开的沙路法则参照克莱姆和Bezout的工作,1772年,Laplace在《对积分和世界体系的探讨》中,证明了Vandermonde的一些规则,并推广了他的展开行列式的方法,用r行中所含的子式和它们的余子式的集合来展开行列式,这个方法如今仍然以他的名字命名。1841年,德国数学家雅可比(Jacobi)总结并提出了行列式的最系统的理论。另一个研究行列式的是法国最伟大的数学家柯西(Cauchy),他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了laplace的展开定理。相对而言,最早利用矩阵概念的是拉格朗日(Lagrange)在1700年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为0,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。
拉格朗日大约在1800年,高斯(Gauss)提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯- 约当消去法则最初是出现在由Wilhelm Jordan撰写的测地学手册中。许多人把著名的数学家Camille Jordan误认为是“高斯- 约当”消去法中的约当。
矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。
1848年,英格兰的J.J. Sylvester首先提出了矩阵(matrix)这个词,它来源于拉丁语,代表一排数。在1855年矩阵代数得到了Arthur Cayley的进一步发展。Cayley研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换ST的系数矩阵变为矩阵S和矩阵T的乘积。他还进一步研究了那些包括矩阵的逆在内的代数问题。1858年,Cayley在他的矩阵理论文集中提出著名的Cayley-Hamilton理论,即断言一个矩阵的平方就是它的特征多项式的根。利用单一的字母A来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式
det(AB)=det(A)det(B)为矩阵代数和行列式间提供了一种联系。数学家Cauchy首先给出了特征方程的术语,并证明了阶数超过3的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论。
数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(即V×W≠W×V)的向量代数是由Hermann Grassmann在他的《线性扩张论》(Die lineale Ausdehnungslehre)一书中提出的(1844)。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为1的矩阵,或简单矩阵。在19世纪末美国数学物理学家吉布斯(Willard Gibbs)发表了关于《向量分析基础》(Elements of Vector Analysis)的著名论述。其后物理学家狄拉克(P.A.M. Dirac)提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在20世纪由物理学家给出的。
矩阵的发展是与线性变换密切相连的。到19世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由Peano于1888年提出的。
二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。
高等代数是代数学发展到高级阶段的总称,它包括许多分支。如今大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。
高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。
集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有很大的不同了。 也可以这样说,高等代数就是初等代数的进化,比初等代数更加全面。
不仅是数,也可能是矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。比较重要的代数系统有群论、环论、域论。群论是研究数学和物理现象的对称性规律的有力工具。现在群的概念已成为现代数学中最重要的,具有概括性的一个数学的概念,广泛应用于其他部门。
代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。比如群、环、域等。
多项式是一类最常见、最简单的函数,它的应用非常广泛。多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做代数方程论。研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。
多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。这些大体上和中学代数里的内容相同。多项式的整除性质对于解代数方程是很有用的。解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解。
我们知道一次方程叫做线性方程,讨论线性方程(组)的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。
行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。德国数学家雅可比于1841年总结并提出了行列式的系统理论。
行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。
因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论。矩阵也是由数排成行和列的数表,可以行数和列数相等也可以不等。
矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。
把上面分析过的内容综合起来,组成初等代数的基本内容就是:
三种数——有理数、无理数、复数;
三种式——整式、分式、根式(统称代数式);
三类方程——整式方程、分式方程、无理方程(统称代数方程),
以及由有限多个代数方程联立而成的代数方程组。
值得注意的是:根据方程的定义,只要是含有未知数的等式,就是方程。这里之所以要强调”代数方程“,是因为除了代数方程之外,还有超越方程(即非代数的初等方程,包括指数方程、对数方程、三角方程、反三角方程等)、微分方程、差分方程、积分方程等许多其他形式的方程。后面几类显然不属于代数的范畴。一些有关数学史的内容经常将代数定义为“以解方程为核心的学科”,主要是因为历史上关于代数方程的知识在微积分等近代数学分支建立以前就早有研究了。既然当时都没有微积分,数学家们又怎能想起建立微分方程的概念呢?
初等代数(elementary algebra)的内容大体上相当于现行中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的,等等。这些都只是历史上形成的一种编排方法。
初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和代数方程的求解。代数运算的特点是只进行有限次的加、减、乘、除和开方。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。
很多人把高等代数和线性代数混为一谈,但其实高等代数是大学数学专业开设的专业课,线性代数是大学中除了数学专业以外的理科,工科和部分医科专业开设的课程。
代数学、几何学、分析数学是数学的三大基础学科,数学的各个分支的发生和发展,基本上都是围绕着这三大学科进行的。
代数学与另两门学科的区别,主要在以下两点:
首先,代数运算是有限次的,而且缺乏连续性的概念。也就是说,代数学主要是关于离散性的。尽管在现实中连续性和不连续性是辩证的统一的,但是为了认识现实,有时候需要把它分成几个部分,然后分别地研究认识,再综合起来,就得到对现实的总的认识。这是我们认识事物的简单但是科学的重要手段,也是代数学的基本思想和方法。代数学注意到离散关系,并不能说明这时它的缺点,时间已经多次、多方位的证明了代数学的这一特点是有效的。
其次,代数学除了对物理、化学等科学有直接的实践意义外,就数学本身来说,代数学也占有重要的地位。代数学中发生的许多新的思想和概念,大大地丰富了数学的许多分支,成为众多学科的共同基础。