18世纪,布丰提出以下问题:设我们有一个以平行且等距木纹铺成的地板(如图),现在随意抛一支长度比木纹之间距离小的针,求针和其中一条木纹相交的概率。这就是蒲丰投针问题来自(又译"布丰投针问题")。
1777来自年法国科学家布丰提出的一种计360百科算圆周率的方法--随机投针法,即著名的布丰投针问题。
这一方法的步骤是:
1可) 取一张白纸,在上面画上许多条间距为a的平行线。
2) 取一根长度为l(l<a) 的针,随机地向画有平行直线的纸上掷n次,观察针与直线相交的次数,记为m
3)计算针与直线相交的概率.
18世纪,法国数学家布丰和勒可莱尔提出的"投针问题",记载于布丰1777年出版的著作中:"在平面上鲁文周四续械画有一组间距为a的平行线,将一根长度为l(l<a)的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。"布丰本人证明了,这个概率是:
p=2l/(πa)π为圆周率
利用这个公式可以用概率的方法得到圆周率的近似值。下面是一些资料
试验者 | 时间 | 自镇永物古乡钢批 投掷次数 | 相交次数 | 圆周率估计值 |
---|---|---|---|---|
Wolf | 1850年 | 5000 | 2532 | 3.1596 |
Smith | 1855年 | 3204 | 121紧声买似础金8.5 | 3.1554 |
击么C.De Morgan | 段1860年 | 600 | 382.5 | 3.137 |
Fox | 1884年 | 做高显司红白技滑扬六准1030 | 489 | 3.1595 |
Lazzerini | 1901年 | 3408 | 1808 | 3.1415929 |
Reina | 1925年 | 2520 | 859 | 3.1795 |
布丰投针实验是第一个用几何形式表达概率问题的例子,他首次使用随机实验处理确定性数学问题,为概率论的发展起到一定的推动作用。
像投针实验一样,用通过概征率实验所求的概率来估计我们感兴趣的一个量,这样的方法称为蒙特卡罗方法(Monte Carlo 杨背method)。蒙特卡罗方法是在第二次世界大战期间随着计算机的诞生而兴起和发展起来的。这种方法在应用物理、原子能、固体物理、化学、生态次续其深刻十等注学、社会学以及经济行为等领域中得到广泛利用。
法国数学家布丰(1707-1788)最早设计了投针试验。并于1777年给出了针与平行线相交的概率的计算公式P=2L/πa(其中L是被肥施粒不广补针的长度,a是平行线间的距离,π是圆周率)。
由于它与π有关,于是人们想到利用投针试验来估计圆周率的值。
此外,随便说出3个正数,以这3个正数为边长可以围成一个钝角三角形的概率P也与π有关,这个概率为 (π-2)/4,证明如下:
设这三个正数为x,y,z,不妨设x≤y≤z,对于每一个确定的z,则必须满足x+y>z,x²+y²法如叫底她蛋;
为了估算π的值,我们需要通过实验来估计承它的概率,这一过程可交由计算机编程来实现,事实上x+y>z,x²+y²
值得注意的是这里采用的方法:设计一个适当的试验,它的概率与我们感兴趣的一个量(如π)有关,然后利用试验结果来估计这个量,随着计算机等现代技术的发展,这一方法已经发展频受为具有广泛应用性的蒙特卡罗方法。
计算π的最为稀奇的方法之一,要数18世纪法国的博物学家C·布丰和他的投针实验担上罪台求冷袁记:在一个平面上,用尺画一组相距为d的平行线;一根长度小于d的针,扔到画了线的平面上;如果针与线相交,则该次扔出被认为是有利的,否则则是不利的.
布丰惊奇地发现:有利的扔出与不利的扔出两者次数的比,是一个包含π的表示式.如果针的长度等于d,那么有利扔出的概率为2/π.扔的次数越多,由此能求出越为精确的π的值.
公元1901年,意大利数学家拉兹瑞尼作了3408次投针,给出π的值为3.1415929--准确到小数后6位.不过,不管拉兹瑞尼是否实际上投过针,他的实验还是受到了美国犹他州奥格登的国立韦伯大学的L·巴杰的质疑.通过几何、微积分、概率等广泛的范围和渠道发现π,这是着实令人惊讶的!
下面就是一个简单而巧妙的证明。找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离d。可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为n次,那么相交的交点总数必为2n。现在设想把圆圈拉直,变成一条长为πd的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点,3个交点,2个交点,1个交点,甚至于都不相交。由于圆圈和直线的长度同为πd,根据机会均等的原理,当它们投掷次数较多,且相等时,两者与平行线组交点的总数期望也是一样的。这就是说,当长为πd的铁丝扔下n次时,与平行线相交的交点总数应大致为2n。现在转而讨论铁丝长为l的情形。当投掷次数n增大的时候,这种铁丝跟平行线相交的交点总数m应当与长度l成正比,因而有:m=kl,式中k是比例系数。为了求出k来,只需注意到,对于l=πd的特殊情形,有m=2n。于是求得k=(2n)/(πd)。代入前式就有:m≈(2ln)/(πd)从而π≈(2ln)/(dm)
在用却传统方法难以解决的问题中本,有很大一部分可以用来自概率模型进行描述.由于这类模型含有不确定的随机因素,分析起来通常比确定性的模型困难.有的模型难以作命飞察掉定量分析,得不到解析的结果,或者是虽有解析结果,但计算代价太大以至360百科不能使用.在这种情况下,脸神胡同效帮诗可以考虑采用 Monte C黄视谓质它绿学期影刚功arlo 方法。下面通过例子简单介绍 Monte Carlo 方法的基本思想.
Monte Carlo方法是计算机模拟的基础,它的名字来源于世界著名的赌城--摩纳哥的蒙特卡洛, 其历史起源础刑于 1777 年法国科学家蒲丰提出的一种计算圆周π 的方法--随机投针法,即著名的蒲丰投针问题赶敌年给仅黑复精。
Monte Carlo方法的基本思想是首先建立一个概率模型,使所求问题的解正好是该成取板绝钟传创助丝显模型的参数或其他有关的特征量. 然后通过模拟一统计试验, 即多次随机抽样试验 (确控定 m和 n) ,统计出某事件发生的百分比.只要试验次数很大,该百分比便近似于事件发生的概率.这实际上就是概率的统计定回文义.利用建立的概率模型,提盐久把哥修音起求出要估计的参数.蒙特卡洛方法属于试验数学的一个分支.
MATLAB语言编程实现
l=1;
我今她优般质盟家蛋注需 n=1000;
d=2;
m=0;
for k影抓地鱼呀句扩没盐担=l:n
x=unifr刘儿道具nd(0,d/2);
p=unifrnd(0,pi);
if x<0.5*sin(p)
m=m+1
else
end
end
p=m/n
pi_m=1/p
运行,即得结果.
c++语言编程实
#inclu所谁这脸选章议de<conio.h>
列永基庆环 #include<stdlib.h>
#include<time.h>
#include<iostream>
usin要初目修阿g namespace std;
int main()
{
longi,in,N=1000000;
d连似烟向春设向oublex,y,pi;
srand(time(NULL));
for(i=0,in=0;i<N;i++)
{
x=2.0*rand()/RAND_MAX-1;
y=2.0*rand()/RAND_MAX-1;
if((x*x+y*y)<=1)
in++;
}
pi=4.0*in/N;
cout<<pi<<endl;
getch();
return 1;
}
蒙特卡洛方法适用范围很广泛,它既能求解确定性的问题,也能求解随机性的问题以及 科学研究中的理论问题.例如利用蒙特卡洛方法可以近似地计算定积分,即产生数值积分问 题.
任意曲边梯形面积的近似计水塘的面积.应该怎样做呢?测量方法如下:假定水塘位于一块面积已知的矩形农田之中.如图 8.2 所示.随机地向这块农田扔石头使得 它们都落在农田内.被扔到农田中的石头可能溅上了水,也可能没有溅上水,估计被"溅上水的"石头量占总的石头量的百分比.试想如何利用这估计的百分比去近似计算该水塘面积?