当前位置:首页 > 百科

声学

声学(Acoustics)是一门跨层次的基础性学科,研究从微观到宏观、从次声(长波)到超声(短波)的一切形式的线性与非来自线性机械波现象360百科。同时,现代声学具有极强的交叉性与延伸性,它与现代科学技术的大部分学科发生了交叉,形成了一系列报了衣弦套者就诸如次声学、医学声学、生物声学、海洋声学、环境声学等新型独特的交叉学科方向,在现代科学技术中起印错阶预著着举足轻重的作用。片探降末景威现代声学更是一门具有广泛应用性的学科,对当代科学技术的发展、社会经济的进步、国防事业的现代化、以及人民物质与精神生活的改善与提高中发挥着极其重要、甚至不可替代的作用。

  • 中文名称 声学
  • 外文名称 Acoustics
  • 专业代码 070204T
  • 授予学位 理学学士
  • 修学年限 四年

学科概述

声学

  声学是研究媒质中机械波(即声波)的科学,研究范围包括声波的产生,接受,转换和声波的各种效应。同时声学测量技术是一就记斤纸督年经够校交护种重要的测量技术,层顶器客迅然拉望快岁开有着广泛的应用。声学是物理学来自分支学科之一,是研究媒质中机械波的产生、传播、接收和效应的科学。媒质体扩穿包括物质各态(固体、液体和气体等),可以是弹性媒质也可以是非弹性光球止实核预法媒质。机械波是指质点运动变化(包括位移、速度360百科、加速度中某一种或几种律听句著倍支结状的变化)的传播现象。机械波就是声波。

声音的产生

  未航亚皇举最简单的声学就是声音的产收叫曲树井走权形生和传播,这也是声学研究费便格提的基础。

  声音的传播需要介质,它可在气体、液体和固体中传播,但真空不能传声。声音在不同物质中的传播速度也是不同的,一般在固体中传播的速度最快,液体次之,在气体中传播起显殖南长弦扬得最慢。并且,在气体中传播的速度还与气体的温度和压强有关。

  声音(sound)触等维再换医案是由物体振动产生感尽位落卫团酒但材庆的声波。是通过介质杆雨压照游跳龙食酒风缺(空气或固体、液体)传播并能被人或动物听器官所感知的波动现象。最初发出振动(震动)的物体叫声源。声音以波的形式振丰养客提请景另宗动(震动)传播。声音是声波通过任何物质传播形成的运动。

  声音作为一种波,频率在20 Hz~20 kHz之间的声音是可以被人耳识别的。

​声音的特点

  有规律的悦耳声音叫乐音,没有规律独损鱼减行到脸的刺耳声音叫噪音。响度、音调和音色是决定乐音特征的三个因素。

  响度。物理学中把人耳能感觉到的声音的强弱称为响度。声音的响度大小一般与声源振动的幅度有关,振动幅度越大,响度越大。分贝(dB)则长用来表示声音的强弱。

  音调。物理学中把声音的高、低称为音调。声音的音调高低一般与发生体振动快慢有关,物体振动频率越大,音调就越高。

  音色。音色又叫音品,它反使去育映了声音的品质和特色。不同物体发出的声音,其音色是不同的,因此我们才能分辨不同人讲话的声音、不同乐器演奏的声音等。

  另外,有许多声音是正常人的耳朵听不到的。因为声波的频率工该统天罗六德切延师范围很宽,由10 Hz到10 Hz,但正常人的耳朵只能听到20Hz到20000Hz之间的声音。通常把常眼高于20000Hz的声音称为超声波,低于20Hz的声音称为次声波,在20Hz到20000Hz之间的声音称为可闻声。

研究历史

声学

  声音是人类最早研究的物理现象之一,声学是经典物理学中历史最悠久而当前仍在前沿的唯一分支学科。从上古起直到19世纪,都是把声音理解为可听声的同义语。世界上最早的声学研究工作在音乐方面。 对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的。从那时起直到19世纪,几乎所有杰出的物理学家和数学家都对研究物体振动和声的产生原理作过贡献。

  1635年就有人用远地枪声测声速,假设闪光传播不需时间。以后方法不断改进,到1738年巴黎科学院用炮声测量,测得结果折合到0°C时,声速为332m/s,与最准确的数值331.45m/s只差1.5‰。牛顿在1687年出版的《自然哲学的数学原理》中根据推理:振动物体要推动邻近媒质,后者又推动它的邻近媒质,等等,经过复杂而难懂的推导求得声速应等于大气压与密度之比的二次方根。L.欧拉在1759年根据这个概念提出更清楚的分析方法,求得牛顿的结果。但是由此算出的声速只有288m/s,与实验值相差很大。J.L.R.达朗伯于1747年首次导出弦的波动方程,并预言可用于声波。直到1816年,P.S.M.拉普拉斯指出只有在声波传播中空气温度不变时牛顿的推导才正确,而实际上在声波传播中空气密度变化很快,不可能是等温过程,而应该是绝热过程,因此,声速的二次方应是大气压乘以比热容比(定压比热容与定容比热容的比)γ 与密度之比。据此算出声速的理论值与实验值就完全一致了。

  直到19世纪末,接收声波的仪器只有人耳。人耳能听到的最低声强大约是10 W/m (声压20μPa),在1000Hz时,相应的空气质点振动位移大约是10pm(10 m),只有空气分子直径的十分之一。

  发现著名的电路定律的G.S.欧姆于1843年提出人耳可把复杂的声音分解为谐波分量,并按分音大小判断音品的理论。在欧姆声学理论的启发下,开展了听觉的声学研究(以后称为生理声学和心理声学),并取得重要的成果,其中最有名的是 H.von亥姆霍兹的《音的感知》。在关闭空间(如房间、教室、礼堂、剧院等)里面听语言、音乐,效果有的很好,有的很不好,这引起所谓建筑声学或室内音质的研究。但直到1900年W.C.赛宾得到他的混响公式,才使建筑声学成为真正的科学。

声学

  19世纪及以前两三百年的大量声学研究成果的最后总结者是瑞利,他在1877年出版的两卷《声学原理》中集经典声学的大成,开现代声学的先河。至今,特别是在理论分析工作中,还常引用这两卷巨著。他开始讨论的电话理论,已发展为电声学。在20世纪,由于电子学的发展,使用电声换能器和电子仪器设备,可以产生接收和利用任何频率、任何波形、几乎任何强度的声波,已使声学研究的范围远非昔日可比。现代声学中最初发展的分支就是建筑声学和电声学以及相应的电声测量。以后,随着频率范围的扩展,又发展了超声学和次声学;由于手段的改善,进一步研究听觉,发展了生理声学和心理声学;由于对语言和通信广播的研究,发展了语言声学。在第二次世界大战中,开始把超声广泛地用到水下,使水声学得到很大的发展。20世纪初以来,特别是20世纪50年代以来,全世界由于工业交通事业的巨大发展出现了噪声环境污染问题,而促进了噪声、噪声控制、机械振动和冲击研究的发展高速大功率机械应用日益广泛。非线性声学受到普遍重视。此外还有音乐声学、生物声学。这样,逐渐形成了完整的现代声学体系。

研究特点

  ①大部分基础理论已比较成熟,这部分理论在经典声学中已有比较充分的发展。

  ②有些基础理论和应用基础理论,或基础理论在不同实际范围内的应用问题研究得较多;

  ③非常广泛地世给测吃但杨送推杨渗入到物理学其他分支和其他科学技术领域(包括工农业生产)以及文化艺术领域中。

  现代声学研究一直涉及声子的运动、声子和物质相互作用,以及一些准粒子和电子等微观粒子的特性;所以声学群办既有经典性质,也有量子性质。人类的活动几乎都与声学有关,从海洋学到语言音乐,从地球到人的大脑,从机械工程到医学,从微观到宏观,都是声学家活动的场所。声学的边缘科学性质十分明显,边缘科学是科学的生长点,因此有人主张声学是物理学的一个最好的发展方向。

   声学 - 特性概念

声学

  在气体和液体中只有纵波。在固体中除了纵波以外,还来自可能有横波,有时还有纵横波。声波场中质点每秒振动的周数称为频率,单位为赫(Hz)。现代声学研究的频率范围为10 ~10 Hz,在空气中可听声的波长(声速除以频率)为17mm~17m,在固体中,声波波长的范围则为10 ~10 m,比电磁波的波长范围至少大一千倍。 声波的传播速度为

声学

  式中E是媒质的弹性模量,单位为帕(Pa),ρ是媒质密度,单位为kg/m 。气体中E=γpp是压力,单位是Pa。声在媒质中传播有损耗时,E为复数(虚数部分代表损耗),с也是复数,其实数部分代表传播速度,虚数部分则与衰减常数(每单位距离强度或幅度的衰减)有关,测量后者可求得媒质中的损耗。

  声行波强度用单位面天意增史棉积内传播的功率(以W/m 为单位)表示,但是在声学测量中功率不易直接测量得,所以常用易于测量的声压表示。在声学中常见的声强范围或声压范围非常内答大,所以一般用对数表示,称声强级或声压级,单位是分贝(dB)。先选一个基准值,一个强度等于其基准值10000倍的声,声强级称40dB,强度1000000倍的360百科声则强度级为60dB。声强I与声压p的关系是

声学

  式中Zc是媒质的声特性阻抗,Zc=ρс。声压增加10倍,声强则增加100倍,分贝数增加20。所以声压为其基准值的100倍时,声压级是40dB。在使用声强级或声压级时,基准值必须说明。在空气中,ρс=400,声强的色洲探分镇稳奏而控基准值常取为10 W/m ,与这个声强相当的声压基准值为20μPa(即2×10 N/m ),这大约是人耳在1000Hz所能台船顾杀晶程娘听到的最低值。这时声强级与声压级相等(0dB黄按良格排皮另者明)(这是在空气中,并选择了适当的基准值情况下)

   声学 - 研究方法

波动声学

  也称物理声学,是用丰式雷找波动理论研究声场的方法。在声波波长与空间或物体的尺度数量级相近时,必须用波动声学分析。主要是研究反射、折射、干涉、衍射、驻波、散射等现象。在关闭史据空来下重限烧空间(例如室内,周围有表面)或半关闭空间(例如在水下或大气中,有上、下界面),反射波的互相干涉要形成一系列的固有振动(称为简正振动方式或简正波)。简正方式理论是引用量子力学中本征值的概念并加以发展而形成的(注意到声波波长较大和速度小等特性)。

射线声学

  或称几何声学,它与几何光学相似。主要是研究波长非常小(思度专土题旧就其凯与空间或物体尺度比较)罗天子察时,能量沿直线的传播,即忽略衍射现象,只考虑声线的反射、折射等问题。这是在许多情况下都很有效的方法。例如在研究室内反射面、在固体中作无损检测以及在液体中探测等时,都用声线概念。

统计声学

  主要研究波长非常小(与破角何动候扬唱扩空间或物体比较),在某一频率范围内简正振动方式很多,频率分布很密时,忽略相位关系,只考虑各简正方式的能量相加关系的问固你背题。赛宾公式就可用统计声学方法推导。统计声学方法不限于在关闭或半关闭空间中使用。在声波传输中,统计能量技术解决很多问题,就是一例。

分支学科

  次声学、超声学、电声学、大气声学、音乐声学、语言声学、建筑声距牛学、生理声学、生物声学、水声学、物理学、力学、热学许格音妒天载将错示、光学、电磁学、核物理学、固体物理学。

应用

声学

科研应用

  利用对声速和声衰减测量研究物质特性已应用于很广的范围。测出在空气中,实际的吸收系数比19世纪G.G.斯托克斯和G.R.基尔霍夫根据粘性和热传导推出的经典理论值威个大得多,在液体中甚至大几千倍、几万倍。这个事实导致了人们对弛豫过程的研究,这在对液体以及它们结构的研究中起了很大作用。对于固体同样工作已形成从低频到起声频固体内耗的研究,并对诸如固体结构和晶体缺陷等方面的研究都有很大贡献。

  表面波、声全息、声成像、非线性声学、热脉冲、声发射、超声显微镜、次声等以物质特性研究为基础的研究领域都有很大发展。

  瑞利时代就已经知道的表面波,现已用到微波系统小型化发展中。在压电材料(如石英)上镀收发电极,或在绝缘材料(如玻璃)上镀压电薄膜都可以作成表面波器件。声表面波的速度只有电磁波的十万分之几,相同频率下波长短得多,所以表面波器件的特点是小,在信号存储上和信号滤波上都优于电学元件,可在电路小型化中起很大作用。

  声全息和声成像是无损检测方法的重要发展。将声信号变成电信号,而电信号可经过电子计算机的存储和处理,用声全息或声成像给出的较多的信息充分反应被检对象的情况,这就大大优于一般的超声检测方法。固体位错上的声发射则是另一个无损检测方法的基础。

  声波在固体和液体中的非线性特性可通过媒质中声速的微小变化来研究,应用声波的非线性特性可以实现和研究声与声的相互作用,它还用于高分辨率的参量声呐(见非线性声学)中。 用热脉冲产生的超声频率可达到1012Hz以上,为凝聚态物理开辟了新的研究领域。

  次声学主要是研究大气中周期为一秒至几小时的压力起伏。火山爆发、地震、风暴、台风等自然现象都是次声源。研究次声可以更深入地了解上述这些自然现象。次声在国防研究上也有重要应用,可以用来侦察和辨认大型爆破、火箭发射等。大气对次声的吸收很小,比较大的火山爆发,氢弹试验等产生的次声绕地球几周仍可被收到,可用次声测得这些事件。固体地球内声波的研究已发展为地震学。

声学

  研究液氦中的声传播也很有意义。早在40年代,Л·Д·朗道就预计液氦温度低于λ 点时可能有周期性的温度波动,后来将这种温度波称为第二声,而压力波为第一声。对第一声和第二声的研究又得到另外两种声:第三声超流态氦薄膜上超流体的纵波,第四声多孔材料孔中液氦中超流体内的压缩波。深入研究这些现象都已经成为研究液氦的物理特性尤其是量子性质的重要手段。

  声波可以透过所有物体:不论透明或不透明的,导电或非导电的,包括了其他辐射(如电磁波等)所不能透过的物质。因此,从大气、地球内部、海洋等宏大物体直到人体组织、晶体点阵等微小部分都是声学的实验室。近年来在地震观测中,测定了固体地球的简正振动,找出了地球内部运动的准确模型,月球上放置的地声接收器对月球内部监测的结果,也同样令人满意。进一步监测地球内部的运动,最终必将实现对地震的准确预报,从而避免大量伤亡和经济损失。

通信应用

  语言通信:主要研究语言的分析、合成和机器识别问题。录放声设备和电子计算机的发展在这些工作中起了很大促进作用。已作到语言可以根据打字文稿按声学规律合成声音,有限词汇的口语可以用机器自动识别,口语也可以转化为电码或由电码再转换为声音(声码器)并保存原来口语的特性。现在语言通信的设备还比较复杂,系统的质量和局限还有待于改进。这种改进不仅是技术上的,更重要的是对语言的产生和感知的基本理解。这只有深入进行语言和听觉的基础研究才能得到解决,而不是近期所能完成的。

医疗应用

  除了助听、助语设备外,声学在医学中还有很多可以应用的方面,但发展都很不够或根本未发展,特别是在治疗方面。有迹象说明低强度超声可加速伤口愈合,同时施用超声和X射线可使对癌症的辐射治疗更加有效,超声辐射可治愈脑血栓等,但这些都未形成常规的治疗手段。主要原因是不能确定适当的剂量,超声治疗的机理不明,不清楚是局部加热的结果,还是促进体液的流动起的作用。

  超声检查体内器官并加以显示的方法有广泛的应用声波可透过人体并对体内任何阻抗的变化灵敏(折射、反射),因此超声透视颅内、心脏或腹内的某些功效远非X射线可比,而且不存在辐射病,但使用时也有局限。超声全息用于体内无损检测的技术则尚待发展。达到临床使用的超声技术还包括利用多普勒效应查体内运动(包括胎儿运动及血管内血液的流速等),神经外科在脑的深部用聚焦的超声波造成破坏而不影响大脑的其他部分,利用超声处理治疗人耳中的平衡机构等。牙科用超声钻钻牙而丝毫不影响软组织,可以大大减少病人的不适。

环保应用

声学

  当代重大环境问题之一是噪声污染,社会上对环境污染的意见(包括控告)有一半是噪声问题。除了长期在较强的噪声(90dB以上)中工作要造成耳聋外,不太强的噪声对人也会形成干扰。例如噪声级到70dB,对面谈话就有困难,50dB环境下睡眠、休息已受到严重影响。近年来,对声源发声机理的研究受到注意,也取得了不少成绩。例如,撞击声、气流声、机械振动声等的理论研究都取得重要成果,根据噪声发生的机理可求得控制噪声的有效方法。

建筑学应用

  环境科学不但要克服环境污染,还要进一步研究造成适于人们生活和活动的环境。使在厅堂中听到的讲话清晰、音乐优美是建筑声学的任务,厅堂音质的主要问题是室内的混响。宿舍、公寓建筑的声学问题主要不是研究室内音质(因为房间都很小,混响时间不长),而常常是研究隔声,即要求尽量减小邻居之间的互相干扰:如楼上走路,楼下听得很清楚。隔声大小与墙壁或楼板的厚度(或单位面积的质量)直接有关,但建筑界的倾向是向轻结构发展,与隔声要求正相反,这就给声学家提出难题,劲度控制也许是解决这个矛盾的方法,但还需要做大量工作。城市噪声控制和音质涉及了多方面的问题,非常复杂,许多学科的专家都为此做出了重要贡献,但还有待更深入的进展。

声学与振动

  《声学与振动》OpenJournalofAcousticsandVibration是一本关注声学与振动领域最新进展的国际中文期刊,由汉斯出版社出版发行。主要刊登声学与振动领域最新技术及成果展示的相关学术论文。支持思想创新、学术创新,倡导科学,繁荣学术,集学术性、思想性为一体,旨在为了给世界范围内的科学家、学者、科研人员提供一个传播、分享和讨论声学与振动领域内不同方向问题与发展的交流平台。

  研究领域:

声学与振动。

  声学

  普通线性声学

  非线性声学

  流体动力声学

  超声学、量子声学和声学效应

  次声学

  水声和海洋声学

  结构声学和振动

  噪声、噪声效应及其控制

  建筑声学与电声学

  声学信号处理

  生理、心理声学和生物声学

  语言声学和语音信号处理

  音乐声学

  声学换能器、声学测量及方法

  声学测量方法

  声学材料

  信息科学中的声学问题

  与声学有关的其它物理问题和交叉学科

  振动与波

  线性振动力学

  非线性振动力学

  弹性体振动力学

  随机振动力学

  振动控制理论

  固体中的波

  流体—固体耦合振动

  振动与波其他学科

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com
标签:

  • 关注微信
上一篇:声学语音学
下一篇:声带囊肿

相关文章