太阳热烈城脸久张国联视能简称太阳能,一齐告获或及存按陈帮般指太阳光的辐射能力李特操工程点出量,具体是在太阳内部进行的由"氢"聚变成"氦"的原子核反应,不停地释放出巨大的能量,并不断向宇宙空间辐来自射能量。
太阳热能也是一种360百科利用太阳能的钟步减倒热能技术,主要是接收或聚集太阳辐射使之转换为热能来使用。现代的太阳能科技可以将阳光聚合,并运用其能量产生热水、蒸汽和电力。
太阳来自内部的这种核聚变反应,可以维持几十亿至上百亿年的时间。太阳向宇宙空间发射的辐射功率为3.8x10^23kW的辐射值,其中20亿分之一到达地球大气层。到达地衡训矿器信本肥球大气层的太阳能,30%被大气层反射,23%被大气层吸收,其余的到达地球表面,其功率为800000亿kW,也就是说太阳每秒钟照射到地球上的能维注护条济认聚掉演盟量就相当于燃烧500万吨煤释放的热量。平均在大气外每平米面积每分钟接受的能量大约1367w。广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能360百科等等。狭义的太阳能则限于太阳辐射能的光热、光电和光化学负静的直接转换。
获取太阳热斯能研究太阳还有一种能量---热能。热能最大好处可用保温技术来储备能量。现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电自何力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
美国能源信息管理局将保销坚资季业里太阳能集热器进行分类为低,中,高温集热器。低温集热器的平板一般用于加热游泳池。中等温集热也通常是平板己关井答它染露,但用于制造热水或空间供暖,作为住宅及商业用途。高温混击坏谈火内个获呢直气集热器利用反射镜或透镜聚通烟千般集太阳光,一般用于生产电力。太阳热能不同于光伏发电,转换效率远远超过太阳光能直接转化为电能。虽然在2009年10月全球现有的发电设施,只提供600佰万瓦(MW)太阳能热发电。一个额外的400佰万瓦(MW)的工厂正在建设中,共计14,000佰万瓦(MW)聚光太阳能发电项目也正在开发当中。
反射镜集中太阳光发电
古人很早就知道利用阳光为住宅采暖,但效果却有限,因为大量的热又从窗户中散失了。公元50年,罗马人开始在窗户上安装玻璃,通过我们今天所谓的温室效应把热能更多蒸员刑谓节妒破画她更长久地留在室内,既用于供暖,也用于产出水果指等和蔬菜。之后,太阳热黑载击伯能探能的利用随着罗马帝国的式微而衰落,又在十七世纪的北欧得以重生。
反射镜集中太阳光发电据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。真正将太还止步含目黑整统任劳阳能作为"近期急需的补充能源","未来能源结构的基础",则是近来的事。20世纪70年代以来,太阳沿地能科技突飞猛进,不山米卫文生原无够太阳能利用日新月异。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀做功而抽水的机器。在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,剧材奏测发动机功率不大,工质象术数占接试战节主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能厂城右滑什家员友能飞爱好者个人研究制造。20世纪的100年间,太阳能科技发展历史大体可分为七个阶段。
(1900~1920年)
在这一阶段,世界上太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器和低沸点工质,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造的典型装置有:1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW;1902 ~1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。
(1920~1945年)
在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935~1945年)有关,而太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。
(1945~1965年)
在第二次世界大战结束后的20年中,一些有远见的人士已经注意到石油和天然气资源正在迅速减少, 呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展,并且成立太阳能学术组织,举办学术交流和展览会,再次兴起太阳能研究热潮。 在这一阶段,太阳能研究工作取得一些重大进展,比较突出的有:
1945年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础;
1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件。
在这一阶段里还有其它一些重要成果,比较突出的有:
1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。
1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨--水吸收式空调系统,制冷能力为5冷吨。
1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。
(1965~1973年)
这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。
(1973~1980年)
自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护本国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。 于是,西方一些人惊呼:世界发生了"能源危机"(有的称"石油危机")。这次"危机"在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。日本在1974年公布了政府制定的"阳光计划",其中太阳能的研究开发项目有:太阳房 、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。为实施这一计划,日本政府投入了大量人力、物力和财力。70年代初世界上出现的开发利用太阳能热潮,对我国也产生了巨大影响。一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶 ,在城市研制开发太阳能热水器,空间用的太阳电池开始在地面应用。 我国也兴起了开发利用太阳能的热潮。 这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:
各国加强了太阳能研究工作的计划性,不少国家制定了近期和远期阳光计划。开发利用太阳能成为政府行为,支持力度大大加强。国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工作。
研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、 光解水制氢、太阳能热发电等。
各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代矿物能源,实现大规模利用太阳能。
(1980~1992年)
70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。 受80年代国际上太阳能低落的影响,我国太阳能研究工作也受到一定程度的削弱,有人甚至提出:太阳能利用投资大、效果差、贮能难、占地广,认为太阳能是未来能源,主张外国研究成功后我国引进技术。虽然,持这种观点的人是少数,但十分有害,对我国太阳能事业的发展造成不良影响。这一阶段,虽然太阳能开发研究经费大幅度削减,但研究工作并未中断,有的项目还进展较大,而且促使 人们认真地去审视以往的计划和制定的目标,调整研究工作重点,争取以较少的投入取得较大的成果。
(1992年~至今)
由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开"世界环境与发展大会",会议通过了《里约热内卢环境与发展宣言》, 《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了 可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在 一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,我国政府对环境与发展十分重视,提出10条对策和措施,明确要"因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源",制定了《中国21世纪议程》,进一步明确 了太阳能重点发展项目。
其特点是:太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。
这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;
另一方面也说明太阳能利用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都大。
人类对太阳能的利用有着悠久的历史。我国早在两千多年前的战国时期,就知道利用钢制四面镜聚焦太阳光来点火;利用太阳能来干燥农副产品。发展到现代,太阳能的利用已日益广泛,它包括太阳能的光热利用,太阳能的光电利用和太阳能的光化学利用等。太阳能的利用有光化学反应,被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源利用方式。
太阳向四周辐射大量的光和热,辐射到地球大气层表面的热量每分钟1平方厘米约8.23焦耳,地球每分钟接受的太阳辐射热只有总量的22亿分之一。差不多等于燃烧500万吨煤所发出的热量。太阳来自的光和热是太阳内部原子核聚变反应产生的,由四个氢原子核合成一个氦原子核的挥怎营们二和王刑优白课聚变反应,是在太阳介钟表常回继革核心进行的。太阳为了产生这样多的光和热,每秒钟大约要消耗400万吨物质,从整个太阳质量来说是微乎其微的。
太阳能是太阳内部或者表面的黑360百科子连续不断的核聚变反应过程产生的能量。地球轨道上的平均太阳辐射强度为1367w/㎡。地球赤道的周长为4新帮王松联红评0000km,从而可计算出,地球获得的能量可达173000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h的年平均辐射强度为0.20kw/㎡,相当于有102000TW 的能量,人类依赖这些能量维持生存,其中包括所有其他形式的可再生能源(地热能资学攻活司说任再名补云束源除外),虽然太阳能情学资源总量相当于现在人类所利用的能源的一万多倍,但太阳能的能量密度低之提干问,而且它因地而异,因时而变,这是开发利用太阳能面临的主要问题。太阳能的这些特点站否在来继会使它在整个综合能源体系中的作用受到一定的限制。
尽管太阳辐射到地球大气层优占期系目向群衣永故的能量仅为其总辐射能量的22亿分之一,但已高达173,000TW,也就是说太阳每秒独谁核延右压衡须货较钟照射到地球上的能量就相当于500万吨煤。地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气粮相排松乐多明冲弱不其等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电否社久仅督负和光化学的直接转换。
太阳能既是一次能源,又流是可再生能源。它资质吗础源丰富,既可免费使用,执兴编力据又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。
在我国,西藏西部太阳能资源最丰富,最高达23沉33 KWh/㎡ (日辐射量6.4KWh/㎡ ),居世界第二位,仅次于撒哈拉大沙漠。
根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。
为我国太阳能资源最丰富的地区,年太阳辐射总量6680~8400 MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡。这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。尤以西藏西部最为丰富,最高达233务3 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。
为我国太阳能资源较丰富地区,年太阳辐射总量为5河似阶几克皇850-6680 M脱J/m2,相当于日辐射量4.5~5.1KWh/㎡。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。
为我国太阳能资源中等类型地区,年太阳辐射总量为5000-5850 MJ/m2,相当于日辐射量3.8~4.5KWh/㎡。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、苏北、皖北、台湾西南部等地。
是我国太阳能资源较差地区,年太阳辐射总量4200~5000 MJ/㎡,相当于日辐射量3.2~3.8KWh/㎡。这些地区包括湖南、湖北、广西、江西、浙江、福建北部、广东北部、陕西南部、江苏北部、安徽南部以及黑龙江、台湾东北部等地。
五类地区 主要包括四川、贵州两省,是我国太阳能资源最少的地区,年太阳辐射总量3350~4200 MJ/㎡,相当于日辐射量只有2.5~3.2KWh/㎡。
太阳能辐射数据可以从县级气象台站取得,也可以从国家气象局取得。从气象局取得的数据是水平面的辐射数据,包括:水平面总辐射,水平面直接辐射和水平面散射辐射。
从全国来看,我国是太阳能资源相当丰富的国家,绝大多数地区年平均日辐射量在4 kWh/㎡以上,西藏最高达7 kWh/㎡。
由于集聚太阳热能制作热水的热水器出台,人们开始积极利用太阳热能。迄今为止的技术开发表明,自然循环形、进而高性能强制循环形的太阳能系统已被开发,用途也从供热扩展到暖气与冷气。太阳热能利用机器的能源变换效率较高,在新能源中其设备费用也比较低廉,在费用效果比方面也很好。另外,通过迄今为止的研究开发,机器的性能与耐久性等在世界上也达到了较高的水准。具体而言,构成太阳热能利用系统的主要机器,有高效集聚太阳热能的集热器,将集热长时间蓄积的蓄热槽,热损耗低、效率高的输热配管等热运输系统,高效率利用热能的热变换器及绝热材料等。另外,作为太阳热能利用系统的形态,有冷暖气、供热系统、产业用太阳能系统,太阳热能发电系统,热、电气复合太阳能系统,为了更积极地利用、扩展太阳热能,还开发出许多将太阳热能利用于各种领域的技术。
太阳能热水器普遍
太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输。
无害
开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。
巨大
每年到达地球表面上的太阳辐射能约相当于130万亿t标煤,其总量属现今世界上可以开发的最大能源。?
长久
根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。
分散性
到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1000W左右;若按全年日夜平均,则只有200W左右。而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。
不稳定性
由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,蓄能也是太阳能利用中较为薄弱的环节之一。
效率低和成本高
太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。
太阳能利用基本方式可以分为如下4大类。
它的基本原来是将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。使用最多的太阳能收集装置,主要有平板型集热器、真空管集热器和聚焦集热器等3种。通常根据所能达到的温度和用途的不同,而把太阳能光热利用分为低温利用(800℃)。低温利用主要有太阳能热水器、太阳能干燥器、太阳能蒸馏器、太阳房、太阳能温室、太阳能空调制冷系统等,中温利用主要有太阳灶、太阳能热发电聚光集热装置等,高温利用主要有高温太阳炉等。
太阳能路灯未来太阳能的大规模利用是用来发电。利用太阳能发电的方式有多种。已实用的主要有以下两种。
1、光-热-电转换。即利用太阳辐射所产生的热能发电。一般是用太阳能集热器将所吸收的热能转换为工质的蒸汽,然后由蒸汽驱动气轮机带动发电机发电。前一过程为光-热转换,后一过程为热-电转换。
2、光-电转换。其基本原理是利用光生伏打效应将太阳辐射能直接转换为电能,它的基本装置是太阳能电池。
这是一种利用太阳辐射能直接分解水制氢的光-化学转换方式。
通过植物的光合作用来实现将太阳能转换成为生物质的过程。目前主要有速生植物(如薪炭林)、油料作物和巨型海藻。
太阳能利用中的经济问题:
第一,世界上越来越多的国家认识到一个能够持续发展的社会应该是一个既能满足社会需要,而又不危及后代人前途的社会。因此,尽可能多地用洁净能源代替高含碳量的矿物能源,是能源建设应该遵循的原则。随着能源形式的变化,常规能源的贮量日益下降,其价格必然上涨,而控制环境污染也必须增大投资。
第二,我国是世界上最大的煤炭生产国和消费国,煤炭约占商品能源消费结构的76%,已成为我国大气污染的主要来源。大力开发新能源和可再生能源的利用技术将成为减少环境污染的重要措施。能源问题是世界性的,向新能源过渡的时期迟早要到来。从长远看,太阳能利用技术和装置的大量应用,也必然可以制约矿物能源价格的上涨。
集热式太阳能(Solar Thermal)。原理是将镜子反射的太阳光,聚焦在一条叫接收器的玻璃管上,而该中空的玻璃管可以让油流过。从镜子反映的太阳光会令管子内的油升温,产生蒸气,再由蒸气推动涡轮机发电。
太阳热能发电厂利用太阳辐射将流体加热到非常高的温度。加热后的高温流体在管道内循环,并将热量传给水,从而产生高温蒸气。高温蒸气继而推动涡轮机,并透过连接的发电机发电。
碟式太阳能聚热发电系统中已知具有最高效率的热机是斯特林引擎。在高规模化生产和炎热地区被预测为能够产生所有可再生能源中最便宜的能量。
碟式太阳能聚热发电系统的主要组成部分包括太阳能聚焦器和能量转换器。太阳能聚焦器(或碟)采集来自太阳的能量并聚焦到很小的面积上。碟状结构可以持续追踪太阳。能量转化器包括两个部分,即热能接收器和引擎/发电机。热能接收器可以吸收聚焦后的太阳光之中的能量,将其转化为热能,并储存在热空气或热水之中,然后再将热量输送到引擎/发电机。引擎/发电机子系统利用热能接收器采集的热能来发电。
集中太阳光线加热到元件上的斯特林发动机。整个装置作为一个太阳能跟踪器。
此类技术利用一整个阵列的追踪太阳的镜子(定日镜)以聚集阳光到一个中央接收器。这个接收器被固定在一个塔顶上。接收器内部的热传导流体可以用来产生蒸汽,以推动传统涡轮发电机发电。于八十年代开发的塔式太阳能聚热发电系统,利用蒸汽作为热传导流体。而新型的系统则利用熔化的硝酸盐作为热传导流体,主要是因为这种流体超卓的热容量和传热能力。
抛物型槽电厂使用镜像的弯曲,利用太阳辐射到玻璃管中的流体(也称为接收器,吸收器或收集器)运行槽的长度,反射器的焦点定位在槽。沿一轴槽是抛物线和线性正交轴。接收机垂直于太阳的每日位置的变化,在槽东向西倾斜,从而使接收器上的直接辐射仍然集中。然而,在阳光平行的槽中角度的季节变化而并不需要调整反射镜,由于光接收器上的其他地方进行简单的集中。因此,槽的设计不需要跟踪的第二轴线上。
集中太阳光线加热到元件上的斯特林发动机除了加热以外,太阳辐射中的热量还可以用来制冷。利用太阳能热水系统和吸收式制冷机或吸附式制冷机,可以实现太阳能制冷。
人类直接利用太阳能还处于初级阶段,主要有太阳能集热、太阳能热水系统、太阳能暖房、太阳能发电等方式。
太阳能热水器装置通常包括太阳能集热器、储水箱、管道及抽水泵其他部件。另外在冬天需要热交换器和膨胀槽以及
太阳能热水器
发电装置以备电厂不能供电之需 。太阳能集热器(solar collector)在太阳能热系统中,接受太阳辐射并向传热工质传递热量的装置。按传热工质可分为液体集热器和空气集热器。按采光方式可分为聚光型和聚光型集热器两种。另外还有一种真空集热器:一个好的太阳能集热器应该能用20~30年。自从大约1980年以来所制作的集热器更应维持40~50年且很少进行维修。
太阳能热水器太阳能热水器热水器中,用于吸收太阳能的部分称为集热器,使其可以比普通的"玻璃--建筑"构件组合吸收更多,同时散失急剧减少。热水器中储存能量的物质是水--热容大而易流动,可以高效率地储存能量并方便地输送到需要的部位。于是,更多能够有效利用的热能得以在建筑中流淌。更兼最近太阳能集热器已不局限于屋面,墙面、遮阳板、阳台栏板,都是可以生根的部位,从而使聚集的有效热能较之前多出数倍。其中,只需很少一部分即可满足洗浴热水需求,而大部分热水,可以通过在一种称为"辐射采暖地板"的系统中循环,在冬季多晴好天气的地区为建筑供暖。这种用途,充分消化了建筑太阳能热水系统的"产能",使太阳热能可以得到比通过前述的被动技术更加高效地利用。
最广泛的太阳能应用即用于将水加热,现今全世界已有数百万太阳能热水装置。太阳能热水系统主要元件包括收集器、储存装置及循环管路三部分。此外,可能还有辅助的能源装置(如电热器等)以供应无日照时使用,另外尚可能有强制循环用的水,以控制水位或控制电动部份或温度的装置以及接到负载的管路等。依循环方式太阳能热水系统可分两种:
自然循环式
此种型式的储存箱置于收集器上方。水在收集器中接受太阳辐射的加热,温度上升,造成收集器及储水箱中水温不同而产生密度差,因此引起浮力,此一热虹吸现像,促使水在除水箱及收集器中自然流动。由与密度差的关系,水流量于收集器的太阳能吸收量成正比。此种型式因不需循环水,维护甚为简单,故已被广泛采用。
强制循环式
热水系统用水使水在收集器与储水箱之间循环。当收集器顶端水温高于储水箱底部水温若干度时,控制装置将启动水使水流动。水入口处设有止回阀以防止夜间水由收集器逆流,引起热损失。由此种型式的热水系统的流量可得知(因来自水的流量可知),容易预测性能,亦可推算于若干时间内的加热水量。如在同样设计条件下,其较自然循环方式具有可以获得较高水温的长处,但因其必须利用水,故有水电力、维护(如漏水等)以及控制装置时动时停,容易损坏水等问题存在。因此,除大型热水系统或需要较高水温的情形,才选择强制循环式,一般大多用自然循环式热水器。
利用太阳能作房间冬天暖房之用,在许多寒冷地区已使用多年。因寒带地区冬季气温甚低,室内必须有暖气设备,若欲节省大量化石能源的消耗,设法应用太阳辐射热。大多数太阳能暖房使用热水系统,亦有使用热空气系统。太阳能暖房系统是由太阳能收集器、热储存装置、辅助能源系统,及室内暖房风扇系统所组成,其过程乃太阳辐射热传导,经收集器内的工作流体将热能储存,再供热至房间。至辅助热源则可装置在储热装置内、直接装设在房间内或装设于储存装置及房间之间等不同设计。当然亦可不用储热双置而直接将热能用到暖房的直接式暖房设计,或者将太阳能直接用于热电或光电方式发电,再加热房间,或透过冷暖房的热装置方式供作暖房使用。最常用的暖房系统为太阳能热水装置,其将热水通至储热装置之中(固体、液体或相变化的储热系统),然后利用风扇将室内或室外空气驱动至此储热装置中吸热,再把此热空气传送至室内;或利用另一种液体流至储热装置中吸热,当热流体流至室内,在利用风扇吹送被加热空气至室内,而达到暖房效果。
太阳能路灯太阳能路灯是一种利用太阳能作为能源的路灯,因其具有不受供电影响,不用开沟埋线,不消耗常规电
太阳能路灯
能,只要阳光充足就可以就地安装等特点,因此受到人们的广泛关注,又因其不污染环境,而被称为绿色环保产品。太阳能路灯即可用于城镇公园、道路、草坪的照明,又可用于人口分布密度较小,交通不便经济不发达、缺乏常规燃料,难以用常规能源发电,但太阳能资源丰富的地区,以解决这些地区人们的家用照明问题。
即直接将太阳能转变成电能,并将电能存储在电容器中,以备需要时使用。
太阳能离网发电系统
太阳能离网发电系统包括1、太阳能控制器(光伏控制器和风光互补控制器)对所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量送往蓄电池组储存,当所发的电不能满足负载需要时,太阳能控制器又把蓄电池的电能送往负载。蓄电池充满电后,控制器要控制蓄电池不被过充。当蓄电池所储存的电能放完时,太阳能控制器要控制蓄电池不被过放电,保护蓄电池。控制器的性能不好时,对蓄电池的使用寿命影响很大,并最终影响系统的可靠性。2、太阳能蓄电池组的任务是贮能,以便在夜间或阴雨天保证负载用电。3、太阳能逆变器负责把直流电转换为交流电,供交流负荷使用。太阳能逆变器是光伏风力发电系统的核心部件。由于使用地区相对落后、偏僻,维护困难,为了提高光伏风力发电系统的整体性能,保证电站的长期稳定运行,对逆变器的可靠性提出了很高的要求。另外由于新能源发电成本较高,太阳能逆变器的高效运行也显得非常重要。
太阳能离网发电系统主要产品分类 A、光伏组件 B、风机 C、控制器 D、蓄电池组 E、逆变器 F、风力/光伏发电控制与逆变器一体化电源。
太阳能并网发电系统
可再生能源并网发电系统是将光伏阵列、风力机以及燃料电池等产生的可再生能源不经过蓄电池储能,通过并网逆变器直接反向馈入电网的发电系统。
直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用可再生能源所发出的电力,减小能量损耗,降低系统成本。并网发电系统能够并行使用市电和可再生能源作为本地交流负载的电源,降低整个系统的负载缺电率。同时,可再生能源并网系统可以对公用电网起到调峰作用。并网发电系统是太阳能风力发电的发展方向,代表了21世纪最具吸引力的能源利用技术。
太阳能并网发电系统主要产品分类 A、光伏并网逆变器 B、小型风力机并网逆变器 C、大型风机变流器 (双馈变流器,全功率变流器)。
华东师范大学科研人员利用纳米材料在实验室中成功"再造"叶绿体,以极其低廉的成本实现光能发电。
叶绿体是植物进行光合作用的场所,能有效将太阳光转化成化学能。此次课题组并非在植物体外"拷贝"了一个叶绿体,而是研制出一种与叶绿体结构相似的新型电池---染料敏化太阳能电池,尝试将光能转化成电能。在上海市纳米专项基金的支持下,经过3年多实验与探索,这块仿生太阳能电池的光电转化效率已超过10%,接近11%的世界最高水平。
作为第三代太阳能电池,染料敏化电池的最大吸引力在于廉价的原材料和简单的制作工艺。据估算,染料敏化电池的成本仅相当于硅电池板的1/10。同时,它对光照条件要求不高,即便在阳光不太充足的室内,其光电转化率也不会受到太大影响。另外,它还有许多有趣用途。比如,用塑料替代玻璃"夹板",就能制成可弯曲的柔性电池;将它做成显示器,就可一边发电,一边发光,实现能源自给自足。
太阳能是一种洁净和可持续产生的能源,发展太阳能科技可减少在发电过程中使用矿物燃料,从而减轻空气污染及全球暖化的问题。使用太阳电池,通过光电转换把太阳光中包含的能量转化为电能,使用太阳能热水器,利用太阳光的热量加热水,并利用热水发电,利用太阳能进行海水淡化。现在,太阳能的利用还不很普及,利用太阳能发电还存在成本高、转换效率低的问题,但是太阳电池在为人造卫星提供能源方面得到了应用。