www.ks5u.com
2018年山东高考理科数学模拟冲刺试题【含答案】
数学试卷(理科)
考生注意:
1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分.考试时间120分钟.
2.请将各题答案填在试卷后面的答题卷上.
3.本试卷主要考试内容:高考全部内容.
第I卷
一、选择题(本题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若集合A={x|x2﹣x﹣6>0},集合B={x|﹣1<x<4},则A∩B等于( )
A.∅ B.(﹣2,3) C.(2,4) D.(3,4)
2.若复数z满足(i为虚数单位),则z在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.在一次化学测试中,高一某班50名学生成绩的平均分为82分,方差为8.2,则下列四个数中不可能是该班化学成绩的是( )
A.60 B.70 C.80 D.100
5.一个几何体的三视图如图所示,则该几何体的体积为( )
A.3
B.4
C.5
D.6
10.设min{m,n}表示m、n二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=min{()x﹣2,log2(4x)}(x>0),若∀x1∈[﹣5,a](a≥﹣4),∃x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为( )
A.﹣4 B.﹣3 C.﹣2 D.0
第II卷
17.(本小题满分12分)
如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.
(1)求证:BF∥平面ADP;
(2)求二面角B﹣DF﹣P的余弦值.
19.(本小题满分12分)
中学阶段是学生身体发育最重要的阶段,长时间熬夜学习严重影响学生的身体健康,某校为了解甲、乙两班学生每周自我熬夜学习的总时长(单位:时间),分别从这两个班中随机抽取6名同学进步调查,将他们最近一周自我熬夜学习的总时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周自我熬夜学习的总时长超过22小时,则称为“过度熬夜”.
(1)请根据样本数据,分别估计甲,乙两班的学生平均每周自我熬夜学习时长的平均值;
(2)从甲班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度熬夜”的概率;
(3)从甲班、乙班的样本中各随机抽取2名学生的数据,记“过度熬夜”的学生人数为X,写出X的分布列和数学期望E(X).
20.(本小题满分13分)
已知函数f(x)=(2x+b)ex,F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求b的取值范围.
21.(本小题满分14分)
已知焦距为2的椭圆C: +=1(a>b>0)的右顶点为A,直线y=与椭圆C交于P、Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形.
(1)求椭圆C的方程;
(2)斜率为k的直线l与椭圆C交于两个不同的点M,N.
(i)若直线l过原点且与坐标轴不重合,E是直线3x+3y﹣2=0上一点,且△EMN是以E为直角顶点的等腰直角三角形,求k的值
(ii)若M是椭圆的左顶点,D是直线MN上一点,且DA⊥AM,点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点.
- 5 -