对于高考数学中的导数部分,也是比较难得,下面小编为大家整理了一些关于导数的知识点解题技巧。
-
1、了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
2、熟记基本导数公式;掌握两个函数和、差、积、商的求导法则。了解复合函数的求导法则,会求某些简单函数的导数。
3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
1.题型:
1).切线问题。
2).单调性,极值,值域,最值问题。
3).函数零点(方程的根)的个数和分布问题。
4).不等式恒成立、存在性、不等式证明问题。
5).与数列、不等式、解析几何的综合问题。
2.常规步骤:
1)求导数并变形,写出定义域。
变形的方法:
①.整式:因式分解或配方。
②.分式:通分母,并因式分解。
③.指数式:提取公因式。
④根式:分子有理化
2)解方程 , 判断导数的正负
判断导数正负的方法:
①.检验法。②.图像法。③.单调性法。④.求导数的导数。
3)列表由导函数的正负确认原函数的单调性和极值、最值
4)画函数草图解决问题。
函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。
例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。
再如,将上面的题目加上第二问:已知a为3,求函数f(x)=x3+3x2+9x+a的极值。教师在引导学生分析这一问题时,应引导学生观察,再次利用导数的概念,根据上一个问题中判断出的单调性求出极值,这个过程中导函数正是解决这一问题的根本,也能在应用中让原本复杂的问题变得简单。