当前位置:首页 > 经验

已知三边求三角形面积 已知三角形三边求面积

1、假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:

S=√[p(p-a)(p-b)(p-c)]

而公式里的p为半周长:

p=(a+b+c)/2

2、设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为

cosC = (a^2+b^2-c^2)/2ab

S=1/2*ab*sinC

=1/2*ab*√(1-cos^2 C)

=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]

=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]

=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]

=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

设p=(a+b+c)/2

则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]

=√[p(p-a)(p-b)(p-c)]

3、所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]

声明:此文信息来源于网络,登载此文只为提供信息参考,并不用于任何商业目的。如有侵权,请及时联系我们:fendou3451@163.com
标签:

  • 关注微信

相关文章