不一定是无理数
两个无理数的和不一定是无理数,例如一个无理数与它的负数的和为0,0就不是无理数,例如π+(-π)=0。在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率构成的数字。
无理数也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
两个无理数的和不一定是无理数。无理数加(减)无理数既可以是无理数又可以是有理数,无理数乘(除)无理数既可以是无理数又可以是有理数,无理数加(减)有理数一定是无理数,无理数乘(除)一个非0有理数一定是无理数。
无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、等。而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。